A polyhedral approach to sequence alignment problems

نویسنده

  • Knut Reinert
چکیده

We study two new problems in sequence alignment both from a practical and a theoretical view, using tools from combinatorial optimization to develop branchand-cut algorithms. The Generalized Maximum Trace formulation captures several forms of multiple sequence alignment problems in a common framework, among them the original formulation of Maximum Trace. The RNA Sequence Alignment Problem captures the comparison of RNA molecules on the basis of their primary sequence and their secondary structure. Both problems have a characterization in terms of graphs which we reformulate in terms of integer linear programming. We then study the polytopes (or convex hulls of all feasible solutions) associated with the integer linear program for both problems. For each polytope we derive several classes of facet-defining inequalities and show that for some of these classes the corresponding separation problem can be solved in polynomial time. This leads to a polynomial time algorithm for pairwise sequence alignment that is not based on dynamic programming. Moreover, for multiple sequences the branch-and-cut algorithms for both sequence alignment problems are able to solve to optimality instances that are beyond the range of present dynamic programming approaches.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Application of the ABS LX Algorithm to Multiple Sequence Alignment

We present an application of ABS algorithms for multiple sequence alignment (MSA). The Markov decision process (MDP) based model leads to a linear programming problem (LPP), whose solution is linked to a suggested alignment. The important features of our work include the facility of alignment of multiple sequences simultaneously and no limit for the length of the sequences. Our goal here is to ...

متن کامل

gpALIGNER: A Fast Algorithm for Global Pairwise Alignment of DNA Sequences

Bioinformatics, through the sequencing of the full genomes for many species, is increasingly relying on efficient global alignment tools exhibiting both high sensitivity and specificity. Many computational algorithms have been applied for solving the sequence alignment problem. Dynamic programming, statistical methods, approximation and heuristic algorithms are the most common methods appli...

متن کامل

Multiple sequence alignment with arbitrary gap costs: Computing an optimal solution using polyhedral combinatorics

Multiple sequence alignment is one of the dominant problems in computational molecular biology. Numerous scoring functions and methods have been proposed, most of which result in NP-hard problems. In this paper we propose for the first time a general formulation for multiple alignment with arbitrary gap-costs based on an integer linear program (ILP). In addition we describe a branch-and-cut alg...

متن کامل

A heuristic approach for multi-stage sequence-dependent group scheduling problems

We present several heuristic algorithms based on tabu search for solving the multi-stage sequence-dependent group scheduling (SDGS) problem by considering minimization of makespan as the criterion. As the problem is recognized to be strongly NP-hard, several meta (tabu) search-based solution algorithms are developed to efficiently solve industry-size problem instances. Also, two different initi...

متن کامل

An exact solution for the Segment-to-Segment multiple sequence alignment problem

MOTIVATION In molecular biology, sequence alignment is a crucial tool in studying the structure and function of molecules, as well as the evolution of species. In the segment-to-segment variation of the multiple alignment problem, the input can be seen as a set of non-gapped segment pairs (diagonals). Given a weight function that assigns a weight score to every possible diagonal, the goal is to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Discrete Applied Mathematics

دوره 104  شماره 

صفحات  -

تاریخ انتشار 1999